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SceneComplete: Open-World 3D Scene Completion in Cluttered Real

World Environments for Robot Manipulation
Aditya Agarwal1, Gaurav Singh2, Bipasha Sen1, Tomás Lozano-Pérez1, Leslie Pack Kaelbling1

Fig. 1: (a) takes as input a single RGB-D image of a given scene, visualized here as a point cloud; (b) produces high-quality
fully completed, accurately segmented object meshes in scenes with substantial occlusion and novel objects; and (c) enables
downstream dexterous manipulation that requires accurate complete shape information.

Abstract—Careful robot manipulation in every-day cluttered
environments requires an accurate understanding of the 3D scene,
in order to grasp and place objects stably and reliably and to
avoid colliding with other objects. In general, we must construct
such a 3D interpretation of a complex scene based on limited in-
put, such as a single RGB-D image. We describe SceneComplete,
a system for constructing a complete, segmented, 3D model of
a scene from a single view. SceneComplete is a novel pipeline
for composing general-purpose pretrained perception modules
(vision-language, segmentation, image-inpainting, image-to-3D,
visual-descriptors and pose-estimation) to obtain highly accurate
results. We demonstrate its accuracy and effectiveness with
respect to ground-truth models in a large benchmark dataset
and show that its accurate whole-object reconstruction enables
robust grasp proposal generation, including for a dexterous hand.
We release the code and additional results on our website.

Index Terms—Perception for Grasping and Manipulation,
RGB-D Perception, Manipulation Planning.

I. INTRODUCTION

AS manipulation robots move from constrained environ-
ments such as factories and workshops to open-world

environments such as homes and hospitals, they must be
able to construct representations of their environment that
enable robust, careful manipulation. Such representations need
to individuate objects and characterize their shapes, so that
the robot can reliably select stable grasps and placements
for individual objects and manipulate them without unwanted
collisions. These representations must generally be constructed
from limited input, such as a single RGB-D image. This
problem is fundamentally ill-posed, but we are now in a
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position to address it using strong priors that have been learned
by vision foundation models.

In this paper, we propose a solution to this open-world
scene completion problem in the form of a perception pipeline,
SceneComplete. It combines multiple large pre-trained vision
models into a system that takes a single RGB-D image as input
and predicts as output a completed scene, consisting of a set
of meshes for all the visible objects, including those that are
partially occluded. Crucially, it makes no assumptions about
the categories of the objects, their arrangement, or the camera
viewpoint. It is constructed from multiple highly capable
pre-trained perception components: a vision-language model
(VLM) for identifying and generating short descriptions of the
objects in a scene, a text-grounded image-segmentation model
for localizing objects in the image, a 2D image-inpainting
model for predicting the appearance of occluded parts of
objects, an image-to-3D model for generating complete object
meshes, and visual descriptor and pose-estimation modules
to aid in composing individual predicted meshes into a final
scene. None of these components can individually solve the
problem, but in combination they provide robust object-centric
interpretation of complex images, producing a segmented set
of object meshes that are suitable for robot planning and
manipulation.

To demonstrate the effectiveness of SceneComplete, we
conduct extensive quantitative and qualitative evaluations on
real-world tabletop scenes. Our quantitative evaluations are
on the Graspnet-1B [1] and YCB-Video [2] datasets, which
consist of cluttered tabletop scenes. In these scenarios, accu-
rately predicting the full scene—–including partially occluded
objects—–is crucial for stable grasping, collision-free motion
with an object in the hand, and reliable placing.

We further illustrate the utility of our shape-reconstruction
methods by using them as input to parallel-jaw [3], [4] and

https://scenecomplete.github.io
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Fig. 2: Overview of the SceneComplete pipeline. Starting from a single RGB-D input, the system produces a set of object
meshes registered with the input 3D scan, yielding a complete 3D scene reconstruction. The pipeline consists of six key phases:
(1) An RGB image is fed into a VLM to enumerate and describe objects, (2) object descriptions and the RGB image are
processed by a grounded segmentation model to generate object masks, (3) occluded regions are completed via image inpainting
model adapted to output single fully observable objects on a white background, (4) the inpainted 2D images are passed into
an image-to-3D model to produce object meshes, (5) object meshes are scaled according to the segmented partial point cloud,
and (6) mesh poses are adjusted within the 3D coordinate frame of the original scan using 6DOF pose estimation. Each step
leverages pre-trained open world large vision models, enabling scalability and benefiting from future model improvements.

dexterous grasping [5] methods, the latter being especially
sensitive to the detailed shape of the entire object.

II. RELATED WORK

Feed-forward Scene Reconstruction: Feed-forward multi-
object scene completion methods such as [6]–[10] learn end-
to-end mappings from single-view RGB-D input to completed
object meshes or occupancy grids. These methods are attrac-
tive because they are computationally fast at inference time;
however, suffer from key limitations: ShAPO [7], FSD [6],
and CRISP [10] are closed-set methods, trained extensively
on fixed benchmark datasets with predefined object categories,
and fail to generalize to novel objects. OctMAE [8] addresses
open-set scenes by performing scene-level reconstruction.
However, its predictions are surface-level and do not individ-
uate objects, limiting their utility for robotic manipulation.
ZeroGrasp [9] performs scene reconstruction with individ-
uated objects for grasp generation, but the reconstruction
quality—crucial for collision avoidance—is subpar since the
focus is primarily on grasping. In our results, we compare and
outperform OctMAE and ZeroGrasp in reconstructing scenes
and generating grasps.

Compositional Scene Reconstruction: This line of work
composes multiple open-set models with zero-shot general-
ization into a pipeline for scene reconstruction. While such

methods are typically slower than feedforward methods, they
can directly handle unseen objects with little or no retrain-
ing [11]–[13]. CAST [11] and Gen3DSR [12] both reconstruct
full scenes from a single RGB image by first predicting
depth maps from monocular depth estimation models. CAST
then generates meshes for individual objects and applies a
physics-aware correction step to enforce physically consistent
placements, while Gen3DSR integrates components such as
DreamGaussian to produce full 3D meshes. However, be-
cause both methods rely on predicted depth, their pipelines
are tightly coupled to synthetic outputs and fail to adapt
to raw RGB-D input, where sensor noise is unavoidable.
These approaches are primarily designed for asset generation,
and their inability to incorporate ground-truth depth limits
their applicability in robotics. By contrast, SceneComplete
leverages observed sensor depth (often noisy), enabling a more
flexible pipeline tailored for manipulation tasks.

A different line of work, Open6DOR [13], introduces a
benchmark for language-driven 6-DoF object rearrangement,
along with a baseline pipeline for grasp generation. Their
approach composes a set of modules similar to those in
SceneComplete, but focuses exclusively on predicting object
poses. As a result, the pipeline does not perform full scene
reconstruction, omits critical steps such as registration, and
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restricts predictions to objects that are almost fully visible.
III. METHOD

Figure 2 illustrates the overall design of SceneComplete.
It takes a single RGB-D image as input and produces a set
of object meshes that are registered with the input 3D scan.
The objective is to provide an accurate 3D reconstruction of
the scene, in terms of segmentation into rigid components,
and the shape of each component, expressed as a mesh.
Importantly, each step in the pipeline makes use of existing
pre-trained open-world visual-processing models, with almost
no additional training (we do a small amount of low-rank
adaptation of the inpainting model). This means that, as
improved models become available for each of these tasks,
as they inevitably will, we will be able to immediately profit
from these improvements. We describe each process in detail
in the following subsections.

A. Prompting and segmentation

We begin by using a vision-language model to determine the
number and basic description of objects in the scene. In our
implementation, we pass the RGB image I into ChatGPT-4o1

with the prompt “describe the objects in the image with their
generic name and color as prompts in a list.” It produces a
text response as a list t1, . . . , tn of text descriptions of objects.
E.g., in the example shown in Fig. 2, it returns “Blue Bowl,
Tape, Banana” and so on.

Next, we obtain an image mask for each object. For each
text description ti, we prompt a grounded segmentation model
(in our implementation, GroundedSam2 [14]) using ti on
image I and obtain a candidate set of pairs of masks and
confidence values. For example, the prompt “a pear” might
return multiple useful masks in a scene with two pears; in other
cases, some of the masks will be unhelpful (and hopefully
low-confidence). We use the confidence values to greedily
select a set of non-overlapping masks, and associate each
mask with the text prompt that generated it, producing the
set (R1, T1), . . . , (RN , TN ), R and T denoting the masks and
prompts, respectively, for N objects in the scene.

B. Image Inpainting

Fig. 3: In the image inpainting module, occluded objects (blue
borders) are transformed into single fully observable objects.

As illustrated in the Fig. 3, the objects represented by the
masks in (R1, T1), . . . , (RN , TN ) could be partially occluded
by other objects in the scene. In this step, we use an image in-
painting algorithm to fill in the occluded parts of each object’s
image. This is important for the next step of predicting a 3D
mesh, because the image-to-3D models only performs reliably
with a complete view of the object. Fig. 4 (a) illustrates the
poor results of attempting reconstruction from an incomplete
image.

1https://openai.com/index/hello-gpt-4o/

In our implementation we begin with BrushNet [15], which
takes an image with explicitly masked out regions and a text
prompt, and produces a completed image, with the masked
portions filled in. So for each (Ri, Ti) pair, we begin by
constructing an image Ii with just the segmented object region
Ri on a white background. Then we construct an inpainting
mask consisting of the union of the regions Rj for j ̸= i.
Finally we query Brushnet with Ii, ∪j ̸=iRj , and Ti and obtain
an inpainted image Pi of the completed object.

However, we observed that, out of the box, BrushNet
occasionally synthesized additional objects in the occluded
areas, as shown in Fig. 4 (b), possibly due to the “artistic”
data set on which it was trained. To improve this behavior,
we adapt BrushNet to full, single objects. It is important
to note that, even though we want to adapt BrushNet to
single fully observed objects, we want to retain the open
world capabilities of the model. To achieve this, we use Low-
Rank Adaptation (LoRA) [16] on its learnable layers with the
PEFT method, targeting domain-specific improvements on the
tabletop YCB dataset [17]. LoRA is an effective method for
adapting pretrained models to domain-specific outputs while
retaining the inherent generalization of the models. To perform
this adaptation, we project the different 3D YCB object meshes
from arbitrary poses on a white background and add random
brush masks for inpainting as suggested by BrushNet. The
adapted model allows us to reliably inpaint individual occluded
objects, including those from categories not in the adaptation
dataset.

C. Image-to-3D models for object reconstruction

At this point, we have, for each object, a fully observed
object image Pi on a white background. The next step is to
generate a 3D mesh model for the object. Although methods
exist for operating directly on the point-cloud generated from
the depth channel of the RGB-D image, the depth information
is often very low-resolution and noisy, so these depth-only
models tend to be highly tuned to specific categories [7], [18]–
[20] and viewpoints, or operate over idealized sensory input.
In recent years, substantial improvements have been made in
RGB-only methods, which take advantage of the high quality
of the RGB signal and the enormous amounts of available
training data [21]–[23].

For RGB image as inputs, one option is to use methods that
optimize a 3D mesh through differentiable rendering [24]–
[26]. Although these models have impressive open world
results, they have substantial computational cost. On the other
hand, feed-forward methods such as InstantMesh [23] that
directly map a single-view RGB image into a 3D mesh are
highly accurate, open world, and computationally inexpensive
at the time of inference. For these reasons, we use InstantMesh,
providing each image Pi as input and obtaining a complete
textured 3D mesh Mi as output. The resulting meshes are
produced in an arbitrary orientation, at an arbitrary scale, so
more work remains to be done, as explained in the subsequent
subsections.
D. Mesh Scaling using Dense Correspondence Matching

The next step is to rescale the meshes Mi, using a point-
cloud constructed from the region Ri to determine the scale
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Fig. 4: (a) The impact of inpainting on image-to-3D reconstruction. Without inpainting (top), the image-to-3D model generates
incomplete meshes. Inpainting (bottom) fills in occluded parts, producing accurate 3D reconstructions. (b) Comparison of
inpainting models. Unadapted BrushNet (middle) introduces artifacts, while the adapted version (right) inpaints occluded parts
correctly producing a fully observed object.
factor as follows: (i) Using the default viewpoint v from
InstantMesh, generate an image Vi as a 2D projection of mesh
Mi. (ii) Following [27], find dense visual descriptors of the
segmented original image, Ri and the projected image, Vi,
using a pre-trained vision transformer. In our observation, v is
usually close to the viewpoint from which Ri was rendered.
This enables us to obtain matching visual descriptors across
Ri and Vi. (iii) Generate dense pixel-wise correspondences
between the descriptor images, so that we have a set of pairs
(Rj

i , V
j
i ) where Rj

i is a pixel in the original image of the
object and V j

i is a pixel in the synthesized view. (iv) Map these
correspondences into 3D, to obtain a pair (Rj′

i , V
j′

i ) of points
in 3D. (Note that these point sets may not yet be aligned in
3D—we address that problem in the next step.) (v) Center each
resulting 3D cloud, compute the average Euclidean distance
from the points to the centroid, and compute the ratio of these
values as the scale factor. (vi) Apply the scale factor to the
mesh Mi to put it in the same scale as the original point cloud
to obtain Oi as shown in Fig. 2-(5).
E. 6D Object Pose Estimation and Registration

Now, we have, for each object, an appropriately scaled
mesh Oi, and we need to reconstruct the entire scene. To do
this, we need to find a 6DOF transform for each mesh that
causes it to register well with the observed point cloud. For
this task, we use FoundationPose [28], a robust object-pose
estimation method designed to operate without being limited
to specific object categories. We use its model-based mode,
which takes as input a partial point-cloud derived from region
Ri of the input RGB-D image and an appropriately scaled
textured object mesh Oi, and returns a 6DOF transform τi
mapping Oi into the coordinate frame of the point cloud.

As a result of this process, we have a set of pairs (Oi, τi),
where each Oi is a textured complete mesh for object i and
τi is a pose for that mesh in the camera coordinate frame.
This scene reconstruction provides a highly general represen-
tation for a wide variety of downstream object-manipulation
tasks. Accurate reconstructions of unobserved parts of objects
enables a wide variety of manipulation operations, including
many types of robust grasping, moving safely in cluttered but
unobserved parts of the scene, moving safely when holding a
grasped object, etc.

IV. EXPERIMENTS

We evaluate SceneComplete through three main experimen-
tal regimes:

• Scene Reconstruction and Grasping: We compare
SceneComplete against an existing single-view scene
reconstruction method on a large-scale dataset of tabletop
scenes, GraspNet-1B [1], captured using a RealSense
D435 camera. We also evaluate how the reconstructed
scenes contribute in generating collision-free grasps.

• Object-grasping and Dexterous Manipulation: We
evaluate the effectiveness of SceneComplete in generat-
ing grasps for successfully picking up objects inside a
simulation environment using a parallel-jaw gripper. We
also demonstrate that the reconstructed object models are
of sufficient fidelity to enable dexterous grasp proposals
for a multi-fingered hand, which depends on having a
good estimate of the entire object shape.

• Real-world Evaluations: To assess the real-world ap-
plicability of SceneComplete, we conduct pick-and-place
experiments on a physical robot on a smaller-scale dataset
of tabletop scenes collected in our lab (also using a
RealSense D435 camera), that include everyday objects
which are less likely to have appeared in the training
distribution of any of the models used. We evaluate across
15 scenes, each with 4 to 6 objects.

We observe that the runtime of the current implementation
of SceneComplete is about 20s per object on a single NVIDIA
RTX 4090 GPU; we expect this to improve with advances in
models and GPU architectures.

A. Scene Reconstruction and Grasping

We first evaluate SceneComplete on the task of reconstruct-
ing tabletop scenes from just a single RGB-D image.

Dataset: We use the GraspNet-1B dataset [1] for our evalua-
tion. This dataset is particularly suitable for our setting, due to
its large collection of 190 cluttered tabletop scenes, featuring
88 unique objects in various configurations. It includes ground-
truth 3D object models and poses for each scene, as well as
real RGB-D images.

Baseline: Our primary baselines for comparison are Oct-
MAE [8] and ZeroGrasp [9]. OctMAE performs reconstruction
by combining octree-based representation with a 3D Masked
AutoEncoder (MAE). ZeroGrasp performs simultaneous 3D
reconstruction and 6D grasp pose prediction using an octree-
based CVAE. Both methods expect a single-view RGB-D
image along with a corresponding foreground mask as input,
and output the reconstructed scene. For our experiments, we
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Fig. 5: Qualitative comparisons of scene reconstructions on the GraspNet-1B dataset. For each scene we show, the input
RGB-D image, OctMAE reconstruction (rendered as normal maps as it predicts scene-level occupancy values), ZeroGrasp
reconstruction (rendered as normal maps), our reconstruction (visualized as individually reconstructed object meshes color-
matched to the ground truth), and ground-truth object meshes. Highlighted regions indicate missing area (black) or spurious
region connecting distinct objects (red).

Fig. 6: Evaluating GSR on the YCB-V dataset in Isaac Gym.
We show a close-up of 3 distinct objects being picked up.

Fig. 7: We demonstrate dexterous grasps using both Shadow
Hands and Allegro Hands [5] on objects from the GraspNet-
1B dataset, highlighting improved manipulation of complex
objects with complete 3D reconstructions.

provide OctMAE and ZeroGrasp with the ground-truth seg-
mentation masks. We also report numbers against the partial
point cloud (PartialDecomp).

Metrics: To measure 3D reconstruction quality and fidelity,
we report well-known 3D metrics such as Chamfer distance
(CD) and Earth Mover’s distance-maximum mean discrepancy
(MMD-EMD) metric, similar to existing works [8], [19], [29].
Both CD and MMD-EMD metrics expect pointclouds as input.
For SceneComplete, we sample points uniformly from the
reconstructed object meshes. Since OctMAE predicts occu-
pancy values, we use the reconstructed point cloud produced
by its occupancy values, normal vectors, and SDF. We also
report the Mesh Intersection-over-Union (MIoU) metric, which
is based on comparing the ground-truth meshes with the

Reconstruction Grasping
MIoU↑ CD↓ MMD-EMD↓ GC↓

PartialDecomp 0.166 3.16 3.32 53.5
OctMAE [8] 0.445 1.73 3.11 20.3
ZeroGrasp [9] 0.440 1.86 3.07 18.9
SceneComplete 0.478 1.54 3.06 16.4

TABLE I: Comparison of shape reconstruction methods on
GraspNet-1B. Higher MIoU indicates better shape fidelity.
Lower CD, MMD-EMD, and GC indicate more accurate and
feasible reconstructions for downstream grasping. CD and
MMD-EMD are scaled by 104 and 102 respectively.

reconstructed meshes. Specifically, let U∗ be the union of
volumes enclosed by the ground truth object meshes, and
let Û be the union of the volumes enclosed by the meshes
produced by a reconstruction algorithm. Then the intersection-
over-union metric between the meshes is

MIoU(U∗, Û) =
U∗ ∩ Û

U∗ ∪ Û
.

MIoU explicitly penalizes both under-reconstructions (missing
parts), over-reconstructions (excess geometry), and registration
errors. To compute MIoU, we make the reconstructed meshes
produced by SceneComplete, ZeroGrasp, and OctMAE water-
tight using ManifoldPlus [30].

Collision-free Grasping: We perform a basic test of the
utility of SceneComplete on an important downstream task of
grasping, by using an antipodal grasp generation method [3]
to generate grasps on the objects in the reconstructed scene.
To illustrate the importance of whole-scene reconstruction on
grasping, we ask the question: of these potential grasps, which
ones are in collision with the ground-truth scene? Concretely,
for a reconstructed scene, we (a) sample a set G of collision-
free grasps using antipodal sampling, (b) evaluate grasps in
G that would cause a collision in the ground truth scene to
obtain a subset G′, and compute the Grasp Collision metric
GC as (|G′|/|G|) which is the percentage of grasps that the
reconstruction would allow, that in fact collide, similar to the
metric adopted by [19], [31]. In our case, G is set to 40.
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Contact-GraspNet GSR Antipodal Grasping GSR Overall GSR↑
PartialDecomp 0.46± 0.34 0.17± 0.13 0.32
SceneComplete 0.81 ± 0.2 0.73 ± 0.18 0.77

TABLE II: Overall Grasp Success Rate (GSR↑) on the YCB-V dataset for two grasping methods.

Fig. 8: Qualitative comparisons of scene reconstructions on the scans collected in our lab. For each scene we show, the input
RGB-D image, OctMAE reconstructions, our reconstructions, grasp proposals on input partial point cloud, grasp proposals on
OctMAE’s reconstructions, and grasp proposals on our reconstructions. We show the scene from a front and back viewpoint.

Results: As shown in Table IV, our method outperforms
the baseline methods in all metrics. We also visualize the
comparisons in Figure 5. While OctMAE produces visually
plausible reconstructions, it sometimes fails to recover parts
of objects that are occluded by other objects, or are partially
observable due to the viewpoint. This also results in higher
grasp collisions as shown in Table IV, while our method recov-
ers such missing regions. Moreover, since OctMAE directly
predicts a scene-level reconstruction, it often hallucinates
geometry connecting distinct objects (highlighted in Fig. 5),
which results in a lower MIoU. In contrast, our object-centric
approach reconstructs each object individually, preserving a
clear separation between them. We find that on average, only
16% of grasps generated by SceneComplete are in collision
with real objects, as opposed to 20% of those generated by
OctMAE, 19% of those generated by ZeroGrasp, and 53% of
those generated by PartialDecomp.

B. Object Grasping and Dexterous Manipulation

We next evaluate the utility of SceneComplete for object
grasping and dexterous manipulation in simulation.

Dataset: We use a subset of the YCB-Video [2] dataset
consisting of 30 cluttered tabletop scenes with 4 to 5 objects
per scene from the YCB [17] dataset for simulated grasping
experiments using a parallel jaw gripper. For dexterous manip-
ulation, we evaluate on 20 object instances chosen arbitrarily
from the GraspNet-1B [1] dataset.

Baseline: We compare against the raw input partial point
cloud (PartialDecomp) as the baseline. Since this experiment
is object-centric, its not compatible with OctMAE, which

produces scene-level reconstruction without per-object sep-
aration. While instance segmentation could in principle be
used to individuate objects, they do not reliably recover the
extent or shape of each reconstructed object, making fair
comparison infeasible for object-centric manipulation tasks.
We show comparisons with OctMAE on a scene-level grasping
task in the next section.

Metrics: To assess the effectiveness of SceneComplete for
object manipulation, we evaluate the Grasp Success Rate
(GSR) using simulated grasp attempts (a common metric
adopted by prior works [32], [33]) in Isaac Gym. Our scene
consists of a Franka Emika Panda arm with a parallel jaw
gripper, and scenes from the YCB-V dataset [2]. We compare
the GSR achieved by SceneComplete against PartialDecomp
and adopt two established and distinct grasping methods for
generating grasp proposals:

• Antipodal grasping using [3]: This method samples an-
tipodal points to generate collision-free grasps on the
object meshes. To make the objects compatible with
simulation and to improve efficiency, we perform an ap-
proximate convex decomposition of the watertight object
meshes into convex hulls using CoACD [34].

• Contact-GraspNet [4]: This method generates grasp pro-
posals directly from point clouds and was trained to
predict grasps from partial observations. We generate
grasp proposals on both the reconstructed point cloud
(from SceneComplete) and the raw partial point cloud,
and evaluate these grasps on the ground-truth scenes.

For each grasping method, we first generate candidate
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grasps on both SceneComplete’s reconstructed scene and
PartialDecomp. For each grasp, we simulate a pick attempt
on the reconstructed meshes in Isaac Gym and retain only
those grasps for which the object remains securely held in the
gripper. From these filtered grasps, we randomly select upto 40
grasps per object and evaluate them on the ground-truth object
meshes in Isaac Gym. Each evaluation consists of successfully
picking up the object from its computed grasp and holding it in
the air without dropping, as shown in Fig. 6. GSR is computed
as the proportion of successful grasp attempts out of the 40
evaluated grasps. Objects that do not yield valid grasps due to
constraints such as exceeding the gripper width are excluded
from our evaluation.

Dexterous Grasping and Stability: A significant test of the
utility of our approach is whether the object reconstructions
support the computation of good dexterous grasps for a multi-
fingered hand. We evaluate object reconstruction as:

• Pass a reconstructed object mesh Oi into DexGrasp-
Net [5], configured for a dexterous hand (we used both
Shadow and Allegro hands), to obtain a grasp gi.

• Instantiate Isaac Gym with the selected hand and the
ground truth object mesh.

• Similar to other methods that evaluate dexterous grasp-
ing [5], [35], we lift the hand and rotate it within the
simulation, and detect whether the object is dropped using
PhysX as the physics engine. We visualize dexterous
grasps on representative objects using both Shadow and
Allegro hands in Fig. 7.

We calculate the percentage of such tests that succeed. For
evaluation, we selected 20 objects from the GraspNet-1B
dataset and evaluated SceneComplete against PartialDecomp
on ground-truth objects—an important upper bound illustrat-
ing the reliability of DexGraspNet for selecting such grasps.

Results: As shown in Table II, reconstructing scenes with
SceneComplete significantly improves grasp success rates in
simulation using a parallel jaw gripper. Across both grasping
methods, SceneComplete achieves over twice the number
of successful grasps compared to those from partial input
alone. For dexterous grasping, we observe that the number
of stable grasps sampled by DexGraspNet varies with object
geometry. On average, we evaluate up to 100 random grasps
per object and find that SceneComplete enables twice as many
valid dexterous grasps compared to PartialDecomp. These
improvements show that reconstructing scenes enables more
reliable grasping and manipulation in cluttered environments.

C. Real Robot Experiments

We validate the real-world applicability of SceneComplete
through experiments on a physical robot. Our experimental
setup includes a Franka Emika Panda arm equipped with a
wrist-mounted Intel RealSense D435 camera.

Dataset: We evaluate our method on 15 distinct tabletop
scenes collected in our lab, each containing 4 to 6 everyday
objects, specifically chosen to minimize their likelihood of
appearing in the training distribution of the methods.

Baseline: We compare against PartialDecomp and OctMAE
in our evaluation.

Metrics: For each scene, we capture an initial RGB-D
image using the wrist-mounted camera and randomly select
and execute kinematically feasible and collision-free grasps
on each object in the scene. We measure the success rate as
the percentage of objects that were successfully picked up and
report the results in Table III.

Results: Our method achieves a success rate of ∼73%,
significantly outperforming OctMAE and grasps generated
directly from the input partial point cloud alone. We show
qualitative comparisons with OctMAE in Fig. 8 and additional
results in the supplementary. OctMAE struggles to produce
plausible reconstructions on these everyday objects, often
hallucinating geometry between distinct objects, leading to
no valid grasps being generated for some objects. SceneCom-
plete on the other hand, produces object reconstructions that
align closely with the ground truth scene. We note that for
SceneComplete, most grasping failures occur due to inaccura-
cies in the estimated object size, which subsequently leads to
errors in registration. In general, SceneComplete allows robust
manipulation of objects in cluttered real-world settings.

Partial OctMAE [8] SceneComplete
Success Rate↑ 36.7± 9.9 59.6± 15.3 73.3 ± 15.2

TABLE III: Real robot success rate (%) measured as the
percentage of objects picked successfully by the real robot
for each method.

V. DISCUSSION

a) Limitations: Although our results are very promising,
there are of course many failure modes in a composition of so
many modules, which can have cascading effects on overall
system performance. We outline some failure modes and op-
portunities for improvement. Prompting and segmentation:
Occasionally the VLM fails to detect some of the object(s)
in the image. Tuning the prompt mitigates the problem, as
can prompting multiple ways for multiple hypotheses. Seg-
mentation: Grounded-SAM occasionally segments parts of
an object along with the full object which leads to multiple
reconstruction hypotheses for the same object. We mitigate
this partially using IoU-based de-duplication. Inpainting: Our
current inpainting strategy operates on a relatively isolated
object, which removes some important context. We mitigate
this by slightly increasing the bounding box and adapting
the model, but there is room for improvement. Image-to-
3D: Although remarkable, these models can sometimes fail
to generate plausible reconstructions when given images from
highly unusual viewpoints. Scaling and registration: Our
scaling method is naive and would be improved in some cases
by making it non-isotropic. Registration sometimes fails on
uniformly-textured objects, where it is difficult to find distinc-
tive features. Seed value: The performance of the image-to-3D
and inpainting models may sometimes vary depending on the
seed value selected.

b) Conclusion & Future Work: We have presented a
system that solves full-scene reconstruction from a single
real-world RBG-D input in cluttered, occluded scenes with
no assumptions about object categories. We have built on
an incredibly strong foundation of existing general-purpose
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open-domain perception models and believe our approach
will be able to adapt to and profit from future advances in
such models. One goal of this paper is to emphasize the
importance of this problem for robot manipulation in real
open-world environments and to encourage others to propose
alternative solution strategies. We hope that overall advances
in scene understanding in realistic manipulation settings will
enable much more robust and capable robot manipulation
systems. One important strategy for making the system less
error-prone is to move to a more generative setting with
quantified uncertainty. If each module could generate multiple
hypotheses, conditioned on its inputs, it would be possible to
search for an interpretation that is collectively high-probability
for all the modules.

APPENDIX
ADDITIONAL RESULTS AND ANALYSES

A. Failure Cases and Limitations of the Modular Pipeline

While having a modular pipeline is positive in several
regards, errors can accumulate at each step. This section
discusses the limitations of each component in the pipeline,
highlights where the overall pipeline is most expected to fail,
and includes representative failure scenarios.

Error accumulation is an inherent challenge in our modular
pipeline. Certain failure cases such as missed detections and
segmentation, scale mismatch, and registration errors do arise.
We provide representative failure scenarios and approaches to
mitigate these. We also discuss these limitations in detail in
Section IV of the manuscript.

In Figures 9, 10, and 11, we show some suboptimal results
for the individual modules. In Fig. 12, we show an example of
a suboptimal result in the inpainting model cascading to the
image-to-3D model. Finally, in Figures 13 and 14, we show
failure scenarios that we mitigate using verifiers and simple
heuristics at a minimal additional cost, to prevent them from
propagating into the later stages of the pipeline, as further
detailed in our analysis of verifier-based mitigation strategies.
We will add these failure cases and subsequent mitigation to
the website.

However, as we show later via both qualitative and quantita-
tive metrics, SceneComplete outperforms existing state-of-the-
art methods and works robustly on in-the-wild scenes without
any additional training or with minimal adaptation. Moreover,
the modular nature of SceneComplete allows us to swap out
individual modules in the existing pipeline with improved and
more efficient versions as and when they become available.

B. Comparison with Recent Baselines

This section discusses and compares SceneComplete with
several important recent baselines, including Gen3DSR [12],
ZeroGrasp [9], CAST [11], and FSD [6]. In the main
manuscript, the Related Work section groups prior methods
into feed-forward multi-object full-scene reconstruction ap-
proaches such as FSD [6], ShaPO [7], OctMAE [8], Ze-
roGrasp [9], CRISP [10] etc., and compositional methods
such as Open6DOR [13], Gen3DSR [12], CAST [11], and
SceneComplete, and highlights the advantages of our method
and how it differs from existing approaches.

Regarding comparisons (these results and comparisons are
also included on the project website):

• Gen3DSR: This method generates scene reconstructions
directly from a single RGB image and relies on a monoc-
ular depth estimation model for geometry. We do not
report quantitative comparisons with Gen3DSR because
the model-predicted output is not scaled in 3D (ground-
truth metric depth)—robotics not being its primary use
case. We attempted to adapt the released code to accept
ground-truth partial metric depth (similar setting as ours)
with modified camera intrinsics, but the reconstruction
was unstable, probably due to the real-world metric depth
being noisy. We therefore show qualitative comparisons
against Gen3DSR in Fig. 15 after manually adjusting
their scale using isotropic scaling, and note that their
modular framework is conceptually similar to ours but
technically different.

• ZeroGrasp: ZeroGrasp’s code was released just one
week prior to our RA-L submission, which prevented
inclusion into the original manuscript. In the current
version, we have added quantitative comparisons against
ZeroGrasp on the GraspNet-1B dataset (Table IV). Zero-
Grasp also outputs grasps along with the reconstruction,
and hence we evaluated their predicted grasp proposals
when computing the grasp collision (GC) metric. We
noticed that a large percentage of their predicted grasps
collided with the reconstructed scene, so we filtered them
before computing collisions with the ground-truth scene,
and still observed the GC metric to be fairly high (∼ 43%
grasp collisions). For a fair comparison, we generated
antipodal grasps on ZeroGrasp’s reconstructed scene and
computed the GC again, and reported the metrics (these
are also included in the main manuscript). We show
these qualitatively in Fig. 17. We also show qualita-
tively in Fig. 16 ZeroGrasp’s reconstructions against
SceneComplete on the GraspNet-1B dataset, and observe
that our reconstructions preserve geometry better and
generate more plausible reconstructions. We additionally
run SceneComplete on the public scans released by
ZeroGrasp and show representative examples in Fig. 18,
where our reconstructions are visually more plausible and
preserve better geometry.

• CAST and FSD: Unfortunately, neither of these works
have released their codebases, preventing direct exper-
imental comparison. Nevertheless, they are discussed in
detail in the Related Work section of the main manuscript,
where it is clarified how SceneComplete differs in formu-
lation and execution.

C. Runtime Analysis and Speed–Accuracy Trade-offs

Timing analysis is important for understanding the trade-
off between reconstruction quality and efficiency. This section
reports the runtime of SceneComplete at the module level and
for the overall pipeline (Table V), together with runtime com-
parisons against representative feed-forward and compositional
baselines (Table VI).



9

Fig. 9: Some examples of suboptimal inpainting are shown. Most errors occur when the full spatial extent of the object is
not visible. As shown, our inpainting model takes as input the segmented image of the target object and an inpainting mask
constructed from the 2D bounding box around the object. Within this box, all pixels belonging to other objects are marked as
the region to be inpainted. However, if the object is heavily occluded—e.g., fully hidden from one side, the mask does not
capture the true extent of the occluded region. As a result, the model is forced to infer the object’s missing parts within the
bounded region, resulting in suboptimal results.

Fig. 10: Representative examples of suboptimal image-to-3D generations for a few representative examples for transparent
objects or objects in unusual viewpoints.

Reconstruction Grasping
MIoU↑ CD↓ MMD-EMD↓ GC↓ ZGC↓

PartialDecomp 0.166 3.16 3.32 53.5 -
OctMAE [8] 0.445 1.73 3.11 20.3 -
ZeroGrasp [9] 0.440 1.86 3.07 18.9 43.14
SceneComplete 0.478 1.54 3.06 16.4 -

TABLE IV: Comparison of shape reconstruction methods on
GraspNet-1B. Higher MIoU indicates better shape fidelity.
Lower CD, MMD-EMD, and GC indicate more accurate and
feasible reconstructions for downstream grasping. CD and
MMD-EMD are scaled by 104 and 102 respectively. ZGC is
evaluated on grasps predicted directly by ZeroGrasp.

While the current implementation is slower than feed-
forward methods such as FSD, ShaPO, Oct-MAE, and Ze-
roGrasp, this is largely due to the modular design (which is a
characteristic of recent modular methods that are slower [11]–
[13] than feed-forward approaches but are much more gen-
eralizable). SceneComplete is, however, approximately 2.5×
faster than Gen3DSR (another compositional approach). A key
advantage of this modular design is that as newer and more
efficient foundation models become available, the pipeline
can immediately benefit without retraining. This effect is

TABLE V: SceneComplete module-wise runtime and peak
VRAM. Times reported are inference time in seconds
(forward-pass).

Module Time/obj (4090) Peak VRAM
(s) (GB)

VLM prompt generation (GPT-4o) 2.5s -
Grounded segmentation (GroundedSAM2) 0.5s 2GB
2D inpainting (BrushNet+LoRA) 3.5s 4.5GB
Image-to-3D (InstantMesh) 6s 18GB
Scale estimation (correspondence matching) 5s 2.5GB
Registration (FoundationPose) 1.2 7GB

Total (per object) 19.7 18GB

illustrated by substituting alternate modules in Table VII.
Moreover, due to its compositional design, SceneComplete
works robustly on in-the-wild scenes without any additional
retraining or with minimal adaptation, whereas feed-forward
approaches are typically closed-set and need to be trained
extensively on specific datasets.

The runtime can be further improved with hardware par-
allelization. On GPUs with larger VRAM (e.g., A100s), all
modules after the initial VLM step can be executed in parallel
across multiple objects (with peak VRAM being the primary
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Fig. 11: Representative examples of suboptimal registration using FoundationPose. Notice the misaligned handle of the mug,
and the inverted mug in registration.

Fig. 12: Suboptimal inpainting outputs cascades to suboptimal image-to-3D generation.

Fig. 13: Initial bad segmentation due to all objects not being detected by the GPT-4o VLM. These are fixed by prompting
Gemini 2.5 Flash VLM with the annotated image, and detected objects, and subsequently all objects are segmented.

TABLE VI: Runtime comparison across different methods.
Openness and retraining needs are included to contextualize
speed/accuracy trade-offs. For OctMAE and ZeroGrasp, the
reported time includes the time taken to generate detections
and segmentation masks.

Method Open-set Retraining Time Peak VRAM
(Y/N) Required? (s / obj or scene) (GB)

OctMAE [8] N Y 3+0.5 1GB
ZeroGrasp [9] N Y 3+0.6 10GB
Gen3DSR [12] Y No / minimal 50 19GB
SceneComplete Y No / minimal 19.7 18GB

bottleneck), substantially reducing the total processing time.
In practice, reconstruction of 5 objects can be run in parallel
on an A100 with 80 GB VRAM, significantly reducing the
overall running time for a scene. These additional results
and comparisons, along with qualitative examples, are also
provided on the project website.

TABLE VII: SceneComplete (alternative configuration)
module-wise runtime and peak VRAM. Times are inference
time (forward pass) in seconds on a single GPU (RTX 4090).
Totals are shown for two image-to-3D choices: TriPoSR [36]
and Trellis [37].

Module (Alt Config) Time/obj (s) Peak VRAM (GB)

VLM detection (Gemini 2.5 Flash) 2s -
Grounded segmentation (GroundedSAM2) 0.5s 2GB
2D inpainting (LaMa [38]) 0.2s 3GB
Image-to-3D (TriPoSR [36]) 0.9s 8GB
Image-to-3D (Trellis [37]) 7s 19GB
Scale estimation (bounding-box heuristic) ≈0s -
Registration (FoundationPose) 1.2s 7GB

Total (TriPoSR) 4.8 8GB
Total (Trellis) 10.9 19GB

D. Novelty of the SceneComplete Pipeline

While the idea of composing multiple modules is not en-
tirely new [11]–[13], the specific composition and adaptation
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Fig. 14: When correspondence matching for scale-estimation produces suboptimal scaling, this cascades to the registration
step. We use the 3D bounding box (estimated from the object’s partial point cloud) as a heuristic to estimate the scale factor.

Fig. 15: We compare SceneComplete reconstructions against Gen3DSR [12] on a few tabletop scans. SceneComplete generates
much more visually plausible reconstructions. Additionally, Gen3DSR generates reconstructions from just an RGB image, and
uses a monocular depth estimation model for depth prediction, resulting in misalignment with the ground-truth depth. We
make a best effort to manually align Gen3DSR’s reconstructions with the ground-truth by estimating an isotropic scaling
factor, but note that the registrations and scaling are still poor. Comparatively, SceneComplete directly produces reconstructions
that are aligned with the ground-truth depth.

proposed in SceneComplete is, to our knowledge, the first
system to achieve robust object-centric 3D scene completion
from a single RGB-D input in open-world cluttered settings.
Identifying a successful configuration required extensive ex-
perimentation with different modules, and the final pipeline
represents a carefully chosen integration that balances accurate
reconstruction and generalization to novel scenes.

A key contribution is the adaptation of recent image-to-3D
models [21]–[23], [36], [37], [39], [40], originally developed
and evaluated primarily for visual quality in computer vision,
into a robotics pipeline where geometry and structural fidelity
are critical. By coupling these models with inpainting, dense
correspondence scaling, and pose registration, SceneComplete

enables reconstructions that directly support robotic tasks such
as grasping (dexterous and parallel-jaw), manipulation, and
motion planning. This goes beyond visual reconstruction and
demonstrates a novel way of leveraging vision foundation
models for robotic applications.

The results show consistent improvements over existing
end-to-end baselines across multiple reconstruction and grasp-
ing metrics (Table IV), as well as qualitatively in Fig. 16
and Fig. 18. SceneComplete also exhibits superior per-
formance compared to a state-of-the-art modular pipeline,
Gen3DSR [12], as shown qualitatively in Fig. 15. Importantly,
unlike prior feed-forward approaches that are closed-set and
require extensive dataset-specific training, SceneComplete op-
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Fig. 16: Representative examples comparing reconstructions generated by SceneComplete and ZeroGrasp on the GraspNet-
1Billion [1] dataset. SceneComplete generates more plausible reconstructions and preserves geometry better.

erates in an open-set manner and works out-of-the-box in real-
world settings.

Furthermore, because of its modular design, the pipeline
immediately benefits from advances in foundation models, so
that as newer models become available, the overall system
becomes more accurate and efficient. The codebase will be
open-sourced upon publication to support reproducibility, and
additional qualitative and quantitative comparisons will be
included on the project website.

E. Module Choices and Ablation Studies
The choice of modules in SceneComplete is deliberate and

based on extensive evaluation of alternatives, with a focus on
open-set generalization and robustness in cluttered, real-world
settings. A justification of the key modules is provided below:

• Dense Correspondence Matching for scale estimation:
The meshes produced by InstantMesh (the image-to-
3D stage) are not aligned with metric depth (Fig. 2 of
the main manuscript), since they are generated purely
from RGB appearance. Because the setting is open-set,
where no prior model of the object is available, the
only reliable source of metric dimensions is the partial
point cloud of the observed object. A straightforward
alternative explored was enclosing the partial point cloud
and the reconstructed mesh in bounding boxes and using
their dimensions to compute the scale factor (highlighted
as a mitigation step in Fig. 14 when correspondence-
matching for scale estimation fails). However, this ap-
proach has two fundamental issues: (i) the partial cloud

and the reconstructed mesh are generally not axis-aligned,
making box-based comparisons inaccurate, and (ii) the
partial point cloud is itself incomplete due to occlu-
sion and viewpoint limitations, which typically leads to
underestimation of object size. Dense Correspondence
Matching overcomes these problems by directly estab-
lishing correspondences between the partially observable
points and the reconstructed mesh and then estimating
the relative spread of points in 3D. This produces a more
consistent and geometry-aware scale estimate in open-
world settings.

• FoundationPose for 6D pose estimation: Foundation-
Pose is selected instead of traditional registration methods
(e.g., ICP or PnP-RANSAC based alignment) because it
is category-agnostic, fast, and shows strong generalization
in in-the-wild settings. Classical registration techniques
rely on iterative optimization over many steps, which
is both computationally expensive and prone to local
minima, especially when the partial point cloud is noisy
or incomplete. FoundationPose, in contrast, uses a render-
and-compare strategy that directly matches candidate
object views against the observed frame. Despite not
being purely feed-forward, it is highly optimized and
significantly faster than classical optimization-based ap-
proaches, while producing more accurate alignment. This
is highlighted via an example in Fig. 19. Importantly,
FoundationPose requires a CAD model of the object at
inference time to operate in an open-set setting. This fits
naturally in the pipeline, since SceneComplete directly
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Fig. 17: ZeroGrasp reconstructions on the GraspNet-1B dataset with the model-predicted grasps visualized. Even after filtering
the predicted grasps with the reconstructed scene, a large number of grasps collide with the ground-truth scene (visualized
in red), making them not suitable for direct manipulation. For a fair comparison, antipodal grasps (similar to those used in
SceneComplete) are generated and the colliding grasps on the ground-truth scene are visualized.

generates an unaligned, scaled 3D mesh for each object
as input. This allows alignment of reconstructed meshes
in an open-set manner, supporting novel objects without
the need for category-specific training. The quantitative
comparisons in the FoundationPose paper [28] further
compare against ICP-based optimization methods. Addi-
tionally, FoundationPose is observed to be highly robust
to slight errors in the estimation of the scale factor,
whereas ICP-based algorithms are more susceptible to
such miscalculations.

• Other module choices: For the individual components,
vision foundation models with open-ended capabilities
are intentionally selected, ensuring that the pipeline can
generalize to unseen objects and scenes. The primary
contribution is not in the selection of any single module,
but rather in orchestrating a composition of modules
that can work together to achieve open-world scene
completion suitable for robotic manipulation. To vali-
date these choices, ablations against recent models and
heuristic-based baselines are provided. Given the modular
approach, these models can be incorporated with minimal
adaptation.
Qualitative results on alternate choices are shown in
this appendix, with references to the relevant papers for
quantitative comparisons (these will also be included on
the project website). Concretely:

– For VLM detection, GPT-4o is compared against
Gemini-2.5 Flash. Gemini-2.5 Flash produces
slightly worse detections, but is much less expensive
to query (in terms of tokens required) compared to
GPT-4o.

– For image inpainting, BrushNet (with LoRA adap-
tation) is compared against LaMa image inpaint-
ing [38]. BrushNet is a diffusion-based generative

architecture, while LaMa is an encoder–decoder ar-
chitecture. These comparisons are shown in Fig. 20.
Both architectural styles have merits: LaMa is more
robust to oddly shaped inpainting masks that arise
from occlusions, whereas BrushNet has stronger
generative capabilities due to its diffusion-based ar-
chitecture and initialization from Stable Diffusion.
Overall, LoRA adaptation increases BrushNet’s ro-
bustness to oddly shaped masks while retaining its
generative capabilities (as shown in Fig. 22), and
it performs qualitatively better compared to LaMa
inpainting across most scenes.

– For image-to-3D reconstruction, InstantMesh [23] is
compared against two recent state-of-the-art open-
source methods, Trellis [37] and TriPoSR [36], in
Fig. 21. While TriPoSR is an order of magni-
tude faster than InstantMesh (Tables VII and V),
it produces much worse reconstructions. Trellis has
similar compute requirements to InstantMesh, but
in evaluations, InstantMesh produces slightly better
reconstructions in in-the-wild settings.

– For pose estimation, FoundationPose is compared
against traditional optimization-based methods such
as ICP-based optimization, with a representative ex-
ample shown in Fig. 19.

These ablations reinforce two points: (i) the module
choices are empirically justified, and (ii) the modular
design allows new models to be incorporated with min-
imal adaptation. This ensures that SceneComplete will
continue to improve as stronger foundation models are
released. In the forthcoming code release, these module
variants will be exposed as configuration options, allow-
ing users to select among different models depending on
their priorities for speed, accuracy, or resource availabil-
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Fig. 18: SceneComplete comparisons with ZeroGrasp on ZeroGrasp’s collected scenes.

ity.
In addition, further analysis of the LoRA adaptation for the

inpainting module is provided:
• The LoRA-adapted BrushNet and the pretrained Brush-

Net model are evaluated on tabletop objects (YCB +
scans recorded in the lab). These dataset-specific artifacts
and the corresponding fixes are shown in Fig. 22. Similar
outputs generated by the adapted and the pretrained
model are shown in Fig. 23.

• To address generalizability, the adapted model is eval-
uated against the pretrained BrushNet model on the
original Laion-Aesthetic [41] dataset (on which the model
was trained), as shown in Fig. 24. The results indicate that
the model retains its general-purpose inpainting ability
while adapting to tabletop scenes, confirming that gener-
alization is preserved.

F. Scalability and Runtime Considerations

Runtime is an important consideration, especially for larger
scenes. A detailed timing analysis, as well as the peak
VRAM memory consumption for each individual module in
the pipeline, is provided in Table V. As shown there, the
most time-consuming step is the image-to-3D stage, which is a
natural target for further research and optimization. Alternative
module choices are also integrated as drop-in replacements in
the pipeline, with their timings reported in Table VII.

A key limiting factor for end-to-end runtime is the available
GPU memory, since many of the foundation models used in
SceneComplete are memory-intensive. On an RTX 4090 GPU
with 24 GB of VRAM, modules must be executed sequentially,
which increases total latency. To explore scalability, experi-
ments are also conducted on an NVIDIA A100 with 80 GB
of VRAM, which allows multiple modules to be executed in
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Fig. 19: Comparing registration between ICP and FoundationPose.

Fig. 20: Comparing the different inpainting models.

parallel. In this setting, completions for up to 5 objects can
be run concurrently, substantially reducing the effective per-
object runtime.

While SceneComplete is slower than feed-forward ap-
proaches such as OctMAE and ZeroGrasp (Table VI), it offers
a complementary set of benefits: the pipeline works out-of-
the-box in open-set conditions and requires no dataset-specific
retraining. In contrast, feed-forward approaches often require
hundreds of GPU-hours of training on modern hardware to
produce competitive results, and the resulting models are
typically closed-set, restricted to the benchmarks that they
were trained on. SceneComplete therefore provides a more
general and readily deployable solution with the flexibility to
integrate newer and faster models as they become available.

Finally, in line with current hardware and model trends,
both inference time and memory usage are expected to con-
tinue to decline as more efficient backbones are released and
more powerful GPUs become available, further improving the

practicality of SceneComplete.

G. Generalizability of LoRA-based Inpainting Adaptation

The use of LoRA fine-tuning on BrushNet [15] is intended
as a lightweight adaptation to improve performance on tabletop
scenes without limiting generalization. BrushNet is trained
on BrushData, which is constructed from the Laion-Aesthetic
subset of Laion-5B and contains generic web images. While
this makes BrushNet broadly capable in open-set inpainting,
it was observed to introduce artifacts (hallucinations) that
reflect biases present in its training dataset. To bridge this
gap, BrushNet is fine-tuned with LoRA using a small set of
representative tabletop examples consisting of YCB objects.
Crucially, LoRA preserves the generalization ability of the
pre-trained backbone while enabling adaptation to tabletop
scenes. As described in [16], LoRA achieves this by injecting
low-rank matrices into the frozen weight space of the model.
This approach allows the visual priors from Laion-Aesthetic to
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Fig. 21: Image-to-3D comparison for different state-of-the-art models.

remain untouched, while the low-rank updates provide a small
adaptation to the structured occlusion patterns encountered in
the tabletop setting.

To strengthen this discussion, generalizability is explicitly
analyzed in complementary settings, and the corresponding
results are made available on the project website.

In summary, while LoRA-adapted BrushNet provides a
boost on YCB scenes, the low-rank adaptation helps the model
infer structural properties of inpainting needed for general
tabletop occlusions, without restricting it to tabletop settings.
SceneComplete therefore remains open-set and generalizable
by design.
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